3.294 \(\int (a+a \cos (c+d x)) \sqrt{\sec (c+d x)} \, dx\)

Optimal. Leaf size=75 \[ \frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0757447, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3238, 3787, 3771, 2639, 2641} \[ \frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x)) \sqrt{\sec (c+d x)} \, dx &=\int \frac{a+a \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=a \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+a \int \sqrt{\sec (c+d x)} \, dx\\ &=\left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 a \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}\\ \end{align*}

Mathematica [C]  time = 1.01724, size = 141, normalized size = 1.88 \[ -\frac{2 i a \left (-2 \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-e^{2 i (c+d x)}\right )+2 e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-e^{2 i (c+d x)}\right )+e^{2 i (c+d x)}+1\right )}{d \left (1+e^{2 i (c+d x)}\right ) \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

((-2*I)*a*(1 + E^((2*I)*(c + d*x)) - 2*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*
I)*(c + d*x))] + 2*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c
 + d*x))]))/(d*(1 + E^((2*I)*(c + d*x)))*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 1.89, size = 150, normalized size = 2. \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}a\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) }{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)*sec(d*x+c)^(1/2),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}}\, dx + \int \sqrt{\sec{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(sqrt(sec(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)